
1 The H-Theorem

One of main motivations for Boltzmans work was to gain additional understanding about Second Law of thermo-
dynamics. On first glance Boltzmans works seems to not have much to do with thermodynamics expect for the fact
that the Boltzman equation governs the time dependence of the density of an extensive variable. This is different
from the Onsager theory. It is worth noting that in Boltzmann approach entropy-like function arises naturally.
Boltzmann called that function ’H−function’. It can be shown (it’s done in Chapter 4 but not covered in this text)
that H−function and Boltzmans H−theorem are a special case of a result which holds for more general nonlinear
systems.

Let us define H − function as

H =
∫ ∫

ρ ln ρd~rd~v. (1)

Where ρ is µ-space number density, defined by equation (2.7.1) at page 70 and d~r, d~v note integration over location
vectors and velocities in our 6 dimensional phase space. Boltzmann discovered that in closed system dH/dt ≤ 0,
or in other words H is a non increasing function of time. This discovery is called the H − theorem, and its validity
follows from Boltzmann equation. Without detailed math for the proof we would need to take first time derivative
of H − function defined by (1) and then applying Boltzmans equation for remaining terms of the derivative. Last
remaining integrand can be symmetrized with three clever changes of variables and rearranging integration order.
Then it is possible to use invariance of the volume element under collision and interchanging interacting particles
yields us second identical equation. After that it is possible to add together equations for both situations and study
remaining integral finding that it is negative semi-definite at first part and that other terms are non-negative so
condition dH/dt ≤ 0 holds. During the analysis process we find also, that equality in last expression hold for and
only for ρ = ρe (where e denotes equilibrium).

Function H acts like entropy in that it provides preferential direction for time, that is, the H-theorem shows that
time increases in the direction for which H decreases. In the next chapter (not covered in this text) we see that
H function is also related to nonlinear dissipation function which generalizes the Onsager-Rayleigh dissipation
function presented earlier in equation (2.3.19).

2 µ-Space Averages and the Maxwell Distribution

One of the results of proofing H − theorem is worthy of attention a bit more. From the condition ρ = ρe for
dH/dt = 0 we can write equation

ρeρe
1 = ρe′

ρe′

1 , (2)

where subindex denotes different particle and ′ denotes change of variables. If we take the logarithm from (2) it is
relatively easy to see that only distributions which satisfy

ln ρe + ln ρe
1 = ln ρe′

+ ln ρe′

1 (3)

correspond to a constant value of H. As the H-theorem proves that H is a monotonically decreasing function
of time, we claim that µ-space density which statsifies (3) is the asymptotic equilibrium density function. That
means than in the absence of external field, the equiblirium phase space density will be independent of position.
Unfortunately we cant claim same for velocity so we need to study that a bit more. Let us start by writing equation
(3) symbolically as

ψ(~v) + ψ(~v1) = ψ(~v′) + ψ(~v′1), (4)

where ψ = ln ρe. A function which satisfies equality (4) is called a collisional invariant. There are five linearly
independent collisional invariant for binary collisions, the mass (or any other function that is independent of
velocity - and no - we do not consider relativistic mechanic here), the three components of momentum and the
kinetic energy. The latter four are expressed by the conservation equations represented in previous text (equations
(2.7.4) and (2.7.5)). Correspondingly conservation of energy

v2 + v2
1 = v

′2 + v
′2
1 ,

and conservation of linear momentum
~v + ~v1 = ~v′ + ~v′1.
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Form here it follows that in absence of an external field the equiblirium µ-space density, ρe(~v), statsifies

ln ρe = a+~b · ~v +
cmv2

2
, (5)

where vector ~b is ~b = 2R sinα and angle α is related to the scattering angle κ = π − 2α (for reference see figure
2.3 at page 71). Now – if we complete the square in the quadratic function of ~v on the right hand side of equation
(5), the equation can be written more conveniently as

ρe(~v) = eα · e− 1
2 βm|~v− ~v0|2 . (6)

This Gaussian form is called the Maxwell distribution and constants α and β are determined through µ-space
averages.

µ-Space averages are quite relevant addition to previously presented picture about nonequiblirium thermodynamics.
The ’stochastic ensemble’ point of view presented in first chapter replaced and investigation of properties of a single
system with those of an ensemble of systems, prepared in a macroscopically identical fashion. However, at the
Blotzmann level of description, that is, using the µ-space number density as the macroscopic variable, the ensemble
consists of many N -molecule systems systems identically prepared with respect to their µ-space density. The
Boltzmann equation describes the time evolution of ρ only on the average. For example ρe(~v) is really the µ-space
density averaged over the equiblirium ensemble. It gives expected number of molecules in the volume element (in
our phase space) in the volume element d~rd~v at equiblirium.

The µ-space density can be used to carry out additional averaging, not in the ensemble – which consists of N -
molecule systems – but over the N -molecules within a system. Using additional averaging we can determine
constants α and β in Maxwell distribution. Note also that Boltzmans approach lacks fluctuations. The ensemble
picture, makes it clear that µ-space level of description is inherently stochastic. Thus the ρ in Boltzmann’s equation
must be average quantity, otherwise it would satisfy a stochastic equation. Constant β is connected to kinetic
energy per molecule (thus eventually depends only on molecule mass and ideal gas temperature) while constant α
is determined by average velocity at equiblirium. At the equiblirium Maxwell distribution in µ-space is completely
determined by the mass of molecule and reading of an ideal gas thermometer.

3 Conservation equations and uniting the Onsager and

Boltzmann pictures.

Remaining two sections are covered rather lightly without any mathematical details while trying to stress relevant
conclusions achieved in those sections.

Conservation equations (section 2.10 in the book) can be summarized rather shortly. Since the Boltzmann equation
describes the average time rate of change ρ, it can be used to obtain equations which describe how these hydrody-
namic densities change over time. In that section it is shown that the conservation equations at the hydrodynamic
level (obtained in section 2.4 previously), can be derived from the Boltzmann equation.

Uniting the Onsager and Boltzmann pictures is a bit more important section as that is the problem we are trying
to solve in all upcoming presentations. The overtly thermodynamic character of Onsager picture of irreversible
process is in strong contrast to the mechanical character of the Boltzmann picture. Nonetheless, both pictures
share a number of common features. First and foremost, each involves a contracted description of nature and,
thus, eschews the deterministic description that is inherent in the mechanical picture of matter. The existence of
H−function provides another point of contact between Boltzmann and Onsager theory. Although the Boltzmann
picture does not rely on the existence of an entropy function, the H−theorem suggest that the negative of H is
related to the entropy. Another point of contact between Boltzmann and Onsager theories is the recognition of the
need for a stochastic description. A final relationship between Onsager and Boltzmann theories can be seen if we
restrict attention to the Boltzmann equation in neighborhood of equiblirium.

In order to unite the two approaches completely, it is neccesary to eliminate the entropy from Onsager picture and to
add fluctuations to the Boltzmann picture. In addition, nonlinear effects need to be included in the Onsager picture,
while a clear stochastic interpretation of nonlinear Boltzmann equation needs to be provided. To do this requires
the introduction of new picture of macroscopic systems which combines the kinetic approach of Boltzmann with
the stochastic and thermodynamic approach of Onsager. This new picture provides the content for all upcoming
presentations.
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